
DataSyn GmbH

Indexing in Power BI

Indexing in Power BI provides a layer of abstraction that can be advantageous when dealing with
changing data or evolving business requirements.

Advantages

1. Flexibility in Data Sources
By establishing relationships and indexing, you can create a more flexible data model. This
allows you to switch data sources or update the underlying data without affecting the report
visuals. When column names or data structures change in the source, you often only need to
update the data transformation steps in Power Query rather than modifying every report and
visualization.

2. Centralized Management

Indexing and relationships promote centralized data management. If category names or other
attributes change, you can adjust them in one place within the data model, and the changes
are automatically propagated to all relevant visuals and reports.

3. Data Consistency

Relationships ensure that data remains consistent throughout the report. For instance, if you
change a category name in one location, it will automatically reflect across all related visuals
and calculations. This consistency minimizes the risk of errors due to data inconsistencies.

4. Specific situations

Filtering
•Indexing is especially useful when you need to filter or slice data by

specific columns frequently. It accelerates filtering operations, allowing
users to interact with reports more efficiently.

Sorting
•If you require sorted data for tables or visuals, indexing can expedite

the sorting process, leading to quicker report rendering.

Aggregations
•In cases where you perform aggregation operations (e.g., SUM,

AVERAGE), indexing can enhance the speed of these calculations.

Join Operations
•When working with multiple tables and performing join operations,

indexing on columns used for joining can significantly improve
performance.

Lookup Tables
•Indexing is particularly valuable for lookup tables that are frequently

used to filter, categorize, or categorize data in reports.

Time Intelligence
Functions

•If your data involves time-based analysis and you use time intelligence
functions (e.g., TOTALYTD, SAMEPERIODLASTYEAR), indexing can
optimize these calculations.

Distinct Count
Measures

•When calculating distinct counts of values, indexing can speed up
these calculations for large datasets.

DataSyn GmbH

Disadvantages

1. Model Complexity: Creating many relationships and indexes can lead to increased
model complexity. This can make your data model harder to understand, maintain,
and troubleshoot, particularly for complex datasets.

2. Increased Memory Usage: Indexes consume memory in the Power BI model.
Creating too many indexes on large tables can lead to high memory usage, potentially
causing performance issues and limiting the report's scalability.

3. DAX Complexity: Using relationships and indexed columns in DAX calculations may
introduce complexity to your measures, which could be challenging to manage.

4. Dependency on Data Structure: While relationships provide flexibility, they also

make reports dependent on the underlying data structure. Changes to data structures
may necessitate adjustments in the Power Query transformation steps or in the data
model.

Conclusion

To mitigate these disadvantages, it's crucial to strike a balance between optimizing for performance
and maintaining a manageable, well-structured data model.

DataSyn GmbH

Showcase

a. Manual index
We have a manually created index for cost centers and cost units

In this example, IT Department shouldn’t be included in the visual “BudgetsUtilization”.
To achieve this in a dynamic way, we filter the index of the entry. Even if the name changes in
the future, it wouldn’t have any impact on this report.

b. Automatic index (Power Query)

Another way to use indexes is to insert a column in Power Query with the function
Table.AddIndexColumn.

= Table.AddIndexColumn(#"Changed Type", "Index", 0, 1, Int64.Type)

DataSyn GmbH

In this example, we have a dataset of revenues by date. In a DAX measure, we want to filter
the latest entry. We can achieve this with a simple calculate function with help of the index:

LastRevenue =

VAR MaxIndex =

 MAX ('FactActuals'[Index])

RETURN

 CALCULATE (

 SUM ('FactActuals' [ActualRevenue]),

 ('FactActuals' [Index]) = MaxIndex

)

